Metformin (MET), an anti-diabetic pharmaceutical of large-scale consumption, is increasingly detected in surface waters. However, current knowledge on the long-term effects of MET on non-target organisms is limited. The present study aimed to investigate the effects of MET in the model freshwater teleost Danio rerio, following a full life-cycle exposure to environmentally relevant concentrations (390 to 14 423 ng/L). Considering that the mode of action (MoA) of MET on non-target organisms remains underexplored and that MET may act through similar human pathways, i.e., lipid and energy metabolisms, biochemical markers were used to determine cholesterol and triglycerides levels, as well as mitochondrial complex I activity in zebrafish liver. Also, the hepatosomatic index as an indication of metabolic disruption, and the expression levels of genes involved in MET's putative MoA, i.e. acaca, acadm, cox5aa, idh3a, hmgcra, prkaa1, were determined, the last by qRT-PCR. A screening of mRNA transcripts, associated with lipid and energy metabolisms, and other signaling pathways potentially involved in MET-induced toxicity were also assessed using an exploratory RNA-seq analysis. The findings here reported indicate that MET significantly disrupted critical biochemical and molecular processes involved in zebrafish metabolism, such as cholesterol and fatty acid biosynthesis, mitochondrial electron transport chain and tricarboxylic acid cycle, concomitantly to changes on the hepatosomatic index. Likewise, MET impacted other relevant pathways mainly associated with cell cycle, DNA repair and steroid hormone biosynthesis, here reported for the first time in a non-target aquatic organism. Non-monotonic dose response curves were frequently detected in biochemical and qRT-PCR data, with higher effects observed at 390 and 2 929 ng/L MET treatments. Collectively, the results suggest that environmentally relevant concentrations of MET severely disrupt D. rerio metabolism and other important biological processes, supporting the need to revise the proposed environmental quality standard (EQS) and predicted no-effect concentration (PNEC) for MET.
Keywords: Cell cycle and DNA repair; Full life-cycle exposure; Lipid and energy metabolisms; Metformin environmental concentrations; Zebrafish.
Copyright © 2022 Elsevier B.V. All rights reserved.
原文地址:http://www.ncbi.nlm.nih.gov/pubmed/35843324