α-Glucosidase inhibitors are potential therapeutics for the treatment of diabetes, viral infections, and Pompe disease. Herein, we report a 1,6-epi-cyclophellitol cyclosulfamidate as a new class of reversible α-glucosidase inhibitors that displays enzyme inhibitory activity by virtue of its conformational mimicry of the substrate when bound in the Michaelis complex. The α-d-glc-configured cyclophellitol cyclosulfamidate 4 binds in a competitive manner the human lysosomal acid α-glucosidase (GAA), ER α-glucosidases, and, at higher concentrations, intestinal α-glucosidases, displaying an excellent selectivity over the human β-glucosidases GBA and GBA2 and glucosylceramide synthase (GCS). Cyclosulfamidate 4 stabilizes recombinant human GAA (rhGAA, alglucosidase alfa, Myozyme) in cell medium and plasma and facilitates enzyme trafficking to lysosomes. It stabilizes rhGAA more effectively than existing small-molecule chaperones and does so in vitro, in cellulo, and in vivo in zebrafish, thus representing a promising therapeutic alternative to Miglustat for Pompe disease.