0512-8957 3668 / 18013764755
Activation of peroxymonosulfate by palygorskite-mediated cobalt-copper-ferrite nanoparticles for bisphenol S degradation: Influencing factors, pathways and toxicity evaluation.
来源: | 作者:Li, Qi, Shen, Shen, Li, Kang, Yan, Wang, Zhu, Zhao, Chen (2022) Activation of peroxymonosulfate by palygorskite-mediated cobalt-copper-ferrite nanoparticles for bisphenol S degradation: Influencing factors, pathways and toxicity evaluation. Chemosphere () | 发布时间: 2022-09-19 | 589 次浏览 | 分享到:

Peroxymonosulfate (PMS)-based advanced oxidation process is considered a potential technology for water treatment. Here, palygorskite (PAL)-mediated cobalt-copper-ferrite nanoparticles (16%-CoCu0.4Fe1·6O4@PAL, donated as 16%-CCFO@PAL) were employed for PMS activation to remove bisphenol S (BPS). BPS degradation was greater than 99% under the optimal conditions within 25 min, on which the effects of various influencing factors were explored. The adsorption dissociation energy of PMS over 16%-CCFO@PAL was -6.27 eV, which was lower than that of the Cu-free catalyst (-6.15 eV), demonstrating the excellent catalytic ability of 16%-CCFO@PAL. The efficient catalytic ability of 16%-CCFO@PAL was also verified in real water samples. The oxidation intermediates were identified and their generations were systematically analyzed by DFT calculations. The possible degradation pathways of BPS were proposed and the toxicity of products was predicted. BPS affected the normal development of zebrafish embryos and the levels of sex hormone in adult male zebrafish, and was harmful to the tissues, such as testis, liver, and intestine of zebrafish. The 16%-CCFO@PAL/PMS process can effectively reduce the toxicity of BPS-polluted water. This study paves the way for the real application of 16%-CCFO@PAL/PMS oxidation process and provides a new perspective for the evaluation of water toxicity.Copyright © 2022. Published by Elsevier Ltd.


原文链接:http://www.ncbi.nlm.nih.gov/pubmed/36064014